Chemistry For PHD
Introduction
The PhD in Chemistry focuses on independent research that pushes the boundaries of scientific knowledge. Students focus on particular areas, such as drug development, catalysis, nanotechnology, or theoretical chemistry. Research involves advanced experimental techniques, computational modeling, and interdisciplinary applications. PhD candidates publish in peer-reviewed journals, present at conferences, and contribute original discoveries to the field. Emphasis is on problem-solving, innovation, and critical analysis. Graduates often pursue careers in academia, research institutions, or high-tech industries, shaping the future of chemistry.
All Chapters & Topics
1. Inorganic chemistry
- 1.1. Coordination chemistry
- 1.1.1. Ligand field theory
- 1.1.2. Crystal field theory
- 1.1.3. Molecular Orbital Theory for Coordination Compounds
- 1.1.4. Stability of Coordination Compounds
- 1.1.5. Electronic spectra of coordination compounds
- 1.1.6. Isomerism in Coordination Compounds
- 1.1.7. Kinetics and mechanism of coordination reactions
- 1.2. Organometallic Chemistry
- 1.2.1. Metal Carbonyls
- 1.2.2. Metal alkyl and aryl
- 1.2.3. Fischer and Schrock carbonaceans
- 1.2.4. Oxidative Addition and Reductive Elimination
- 1.2.5. Metal Hydrides
- 1.2.6. Catalysis by organometallic compounds
- 1.2.7. Metallocenes and Sandwich Complexes
- 1.2.8. CH activation
- 1.3. Solid state chemistry
- 1.3.1. Crystal structures and lattices
- 1.3.2. Band theory and electrical properties
- 1.3.3. Defects in the crystal
- 1.3.4. Synthesis of solid state materials
- 1.3.5. Magnetic and optical properties of solids
- 1.3.6. Superconductivity
- 1.3.7. Solid state ionics
- 1.4. Bio-inorganic chemistry
- 1.4.1. Metalloproteins and enzymes
- 1.4.2. Metal ion transport and storage
- 1.4.3. The role of metals in medicine
- 1.4.4. Bioinspired catalysis
- 1.4.5. Metal–DNA interactions
- 1.4.6. Metal Complexes in Medical Science
- 1.5. Lanthanides and Actinides
- 1.5.1. Electronic configuration and oxidation states in lanthanides and actinides
- 1.5.2. Spectral and Magnetic Properties in Lanthanides and Actinides
- 1.5.3. Separation and Extraction of Lanthanides and Actinides
- 1.5.4. Coordination chemistry of f-block elements
- 1.6. Main Group Chemistry
- 1.6.1. Chemistry of boron compounds
- 1.6.2. Chemistry of Silicon and Germanium Compounds
- 1.6.3. Chemistry of Phosphorus and Sulfur Compounds
- 1.6.4. Organosilicon chemistry
- 1.6.5. Noble Gas Chemistry
2. Organic chemistry
- 2.1. Reaction mechanism
- 2.1.1. Nucleophilic substitution reactions
- 2.1.2. Electrophilic addition and substitution reactions
- 2.1.3. Elimination reactions
- 2.1.4. Rearrangement reactions
- 2.1.5. Radical reactions
- 2.1.6. Pericyclic Reactions
- 2.1.7. Photochemical reactions
- 2.2. Stereoscopic
- 2.2.1. Chirality and optical activity
- 2.2.2. Structural analysis
- 2.2.3. Stereoelectronic effects
- 2.2.4. Asymmetric synthesis
- 2.2.5. Dynamic Stereochemistry
- 2.3. Organometallic Chemistry in Organic Synthesis
- 2.3.1. Organolithium and organomagnesium reagents
- 2.3.2. Transition metal catalyzed coupling reactions
- 2.3.3. Palladium-catalyzed reactions
- 2.3.4. Olefin Metathesis
- 2.3.5. Gold and silver catalysis
- 2.4. Natural products chemistry
- 2.4.1. Alkaloids and terpenoids
- 2.4.2. Steroids and Flavonoids
- 2.4.3. Total synthesis of natural products
- 2.4.4. Biosynthesis of natural products
- 2.5. Supramolecular Chemistry
- 2.5.1. Host-Guest Chemistry
- 2.5.2. Self-assembly and molecular recognition
- 2.5.3. Supramolecular Catalysis
- 2.5.4. Molecular Machines
3. Physical Chemistry
- 3.1. Thermodynamics
- 3.1.1. Laws of Thermodynamics
- 3.1.2. Chemical Potential and Equilibrium
- 3.1.3. Statistical thermodynamics
- 3.1.4. Non-equilibrium thermodynamics
- 3.2. Quantum Chemistry
- 3.2.1. Schrödinger equation and its applications
- 3.2.2. Molecular orbital theory
- 3.2.3. Density functional theory
- 3.2.4. Post-Hartree–Fock methods
- 3.3. Chemical kinetics
- 3.3.1. Reaction rate theory
- 3.3.2. Mechanism and rate laws
- 3.3.3. Catalysis and enzyme kinetics
- 3.3.4. Reaction dynamics
- 3.4. Spectroscopy and molecular structure
- 3.4.1. Infrared Spectroscopy
- 3.4.2. UV-visible spectroscopy
- 3.4.3. Nuclear Magnetic Resonance Spectroscopy
- 3.4.4. Mass Spectrometry
- 3.4.5. Raman Spectroscopy
- 3.5. Surface and Colloid Chemistry
- 3.5.1. Absorption and Catalysis
- 3.5.2. Surfactants and micelles
- 3.5.3. Colloidal Stability
- 3.5.4. Nanomaterials and Interfaces
4. Analytical chemistry
- 4.1. Chromatography
- 4.1.1. Gas Chromatography
- 4.1.2. High Performance Liquid Chromatography
- 4.1.3. Thin Layer Chromatography
- 4.1.4. Ion Chromatography
- 4.2. Electroanalytical techniques
- 4.2.1. Voltammetry and Polarography
- 4.2.2. Conductometry and potentiometry
- 4.2.3. Colometry
- 4.3. Spectroscopic Methods
- 4.3.1. Atomic absorption spectroscopy
- 4.3.2. Fluorescence Spectroscopy
- 4.3.3. X-ray diffraction
- 4.3.4. Electron paramagnetic resonance spectroscopy
- 4.4. Chemometrics
- 4.4.1. Data processing and statistical methods
- 4.4.2. Multidisciplinary analysis
- 4.4.3. Machine Learning in Analytical Chemistry
5. Theoretical and Computational Chemistry
- 5.1. Molecular dynamics simulation
- 5.2. Quantum chemistry methods
- 5.3. Computational drug design
- 5.4. Machine Learning in Chemistry
- 5.5. Ab initio molecular dynamics
6. Biophysics and Medicinal Chemistry
- 6.1. Drug discovery and design
- 6.2. Enzyme kinetics and inhibition
- 6.3. Chemical biology approach
- 6.4. Protein-ligand interactions
- 6.5. Bioorthogonal chemistry
7. Materials chemistry
- 7.1. Polymer chemistry
- 7.1.1. Polymerization mechanism
- 7.1.2. Functional Polymers
- 7.1.3. Biodegradable Polymer
- 7.1.4. Conducting and semiconducting polymers
- 7.2. Nano Chemistry
- 7.2.1. Nanoparticles and nanostructures
- 7.2.2. Carbon-based nanomaterials
- 7.2.3. Quantum dots
- 7.3. Energy and Environmental Chemistry
- 7.3.1. Battery and Fuel Cell Chemistry
- 7.3.2. Green chemistry and sustainable materials
- 7.3.3. Photocatalysis