Chemistry For Graduate
Introduction
Graduate Chemistry focuses on specialized areas, such as physical chemistry, organic synthesis, materials science, or computational chemistry. Advanced coursework includes quantum mechanics, statistical thermodynamics, and nanotechnology applications. Research plays a crucial role, with students designing and conducting experiments, analyzing data, and contributing to scientific literature. Collaboration with industries and interdisciplinary approaches expand knowledge in pharmaceuticals, environmental chemistry, and materials engineering. Graduate studies refine analytical skills and prepare students for leadership roles in research, academia, or industry.
All Chapters & Topics
1. Physical Chemistry
- 1.1. Thermodynamics
- 1.1.1. Laws of Thermodynamics
- 1.1.2. Enthalpy and heat capacity
- 1.1.3. Entropy and free energy
- 1.1.4. Phase Equilibrium
- 1.1.5. Statistical thermodynamics
- 1.1.6. Thermodynamic cycle
- 1.1.7. Fugacity and activity
- 1.2. Quantum Chemistry
- 1.2.1. Principles of quantum mechanics
- 1.2.2. Schrödinger Equation
- 1.2.3. Particle in a box
- 1.2.4. Operators and eigenvalues
- 1.2.5. Atomic orbitals
- 1.2.6. Molecular orbital theory
- 1.2.7. Perturbation theory
- 1.2.8. Valence bond theory
- 1.2.9. Hybridization and chemical bonding
- 1.3. Chemical kinetics
- 1.3.1. Rate laws and reaction mechanisms
- 1.3.2. Collision theory
- 1.3.3. Transition state theory
- 1.3.4. Enzyme Kinetics
- 1.3.5. Chain Reactions and Polymerization
- 1.3.6. Photochemical reactions
- 1.4. Statistical mechanics
- 1.4.1. Partitioning functions
- 1.4.2. Molecular distribution functions
- 1.4.3. Boltzmann Distribution
- 1.4.4. Bose–Einstein and Fermi–Dirac statistics
- 1.5. Spectroscopy
- 1.5.1. Rotational Spectroscopy
- 1.5.2. Vibrational Spectroscopy
- 1.5.3. Electronic Spectroscopy
- 1.5.4. Nuclear magnetic resonance spectroscopy
- 1.5.5. Mass Spectrometry
- 1.5.6. Raman Spectroscopy
- 1.5.7. Electron paramagnetic resonance spectroscopy
- 1.6. Surface and colloidal chemistry
- 1.6.1. Absorption isotherm
- 1.6.2. Surface tension and wetting
- 1.6.3. Colloidal Stability
- 1.6.4. Catalysis
- 1.6.5. Emulsions and micelles
- 1.7. Electrochemistry
- 1.7.1. Nernst equation
- 1.7.2. Electrochemical cells
- 1.7.3. Conductivity and mobility
- 1.7.4. War
- 1.7.5. Fuel cells
- 1.7.6. Electrolysis
2. Organic chemistry
- 2.1. Reaction mechanism
- 2.1.1. Nucleophilic substitution reactions
- 2.1.2. Electrophilic addition reactions
- 2.1.3. Elimination reactions
- 2.1.4. Rearrangement reactions
- 2.1.5. Radical reactions
- 2.1.6. Pericyclic reactions
- 2.2. Spectroscopy and structural determination
- 2.2.1. UV-Vis Spectroscopy
- 2.2.2. IR Spectroscopy
- 2.2.3. NMR Spectroscopy
- 2.2.4. Mass Spectrometry
- 2.2.5. X-ray crystallography
- 2.3. Stereoscopic
- 2.3.1. Chirality and optical activity
- 2.3.2. Structural analysis
- 2.3.3. Geometrical isomerism
- 2.3.4. Dynamic Stereochemistry
- 2.4. Organometallic Chemistry
- 2.4.1. Organolithium and organomagnesium reagents
- 2.4.2. Palladium-catalyzed cross-coupling reactions
- 2.4.3. Transition Metal Complexes
- 2.4.4. Metal–carbon bond
- 2.5. Polymer chemistry
- 2.5.1. Polymerization mechanism
- 2.5.2. Polymer Characteristics
- 2.5.3. Biodegradable Polymer
- 2.5.4. Conducting polymer
- 2.5.5. Supramolecular polymers
- 2.6. Medicinal chemistry
- 2.6.1. Drug design and development
- 2.6.2. Pharmacokinetics and pharmacodynamics
- 2.6.3. Structure-activity relationships
- 2.6.4. Molecular docking and drug screening
3. Inorganic chemistry
- 3.1. Coordination chemistry
- 3.1.1. Crystal field theory
- 3.1.2. Ligand field theory
- 3.1.3. Spectrochemical Series
- 3.1.4. Chelation and stability
- 3.2. Organometallic Chemistry
- 3.2.1. Metal Carbonyls
- 3.2.2. Catalysis by organometallic complexes
- 3.2.3. Metallocenes
- 3.3. Bio-inorganic chemistry
- 3.3.1. Metalloproteins and enzymes
- 3.3.2. The role of metals in biological systems
- 3.3.3. Metal ion transport and storage
- 3.4. Solid state chemistry
- 3.4.1. Crystal Structures
- 3.4.2. Band theory of solids
- 3.4.3. Superconductors
- 3.4.4. Defects in the crystal
- 3.5. Lanthanides and Actinides
- 3.5.1. Electronic configuration in lanthanides and actinides
- 3.5.2. Coordination chemistry of the lanthanides
- 3.5.3. Magnetic Properties of Lanthanides
4. Analytical chemistry
- 4.1. Chromatography
- 4.1.1. Gas Chromatography
- 4.1.2. High Performance Liquid Chromatography
- 4.1.3. Thin Layer Chromatography
- 4.2. Spectroscopic Techniques
- 4.2.1. Atomic absorption spectroscopy
- 4.2.2. X-ray diffraction
- 4.2.3. Inductively coupled plasma spectroscopy
- 4.3. Electroanalytical methods
- 4.3.1. Potentiometry
- 4.3.2. Voltammetry
- 4.3.3. Colometry
- 4.4. Mass Spectrometry
- 4.4.1. Ionization Technique
- 4.4.2. Fragmentation Pattern
- 4.5. Chemometrics
- 4.5.1. Multidisciplinary analysis
- 4.5.2. Machine Learning in Chemistry
5. Theoretical and Computational Chemistry
- 5.1. Molecular dynamics simulation
- 5.1.1. Force fields and energy minimization
- 5.1.2. Monte Carlo simulation in molecular dynamics simulations
- 5.2. Quantum chemical methods
- 5.2.1. Hartree–Fock theory
- 5.2.2. Density functional theory
- 5.2.3. Semi-empirical methods
- 5.3. Computational drug design
- 5.3.1. Molecular Docking
- 5.3.2. QSAR Modeling
- 5.3.3. Virtual Screening
6. Biochemistry
- 6.1. Enzyme Kinetics
- 6.1.1. Michaelis-Menten kinetics
- 6.1.2. Inhibition mechanism
- 6.2. Metabolism and Bioenergetics
- 6.2.1. Glycolysis
- 6.2.2. Citric acid cycle
- 6.2.3. Electron transport chain
- 6.3. molecular Biology
- 6.3.1. DNA replication and repair
- 6.3.2. Protein synthesis
- 6.3.3. Gene Regulation
- 6.4. Structural Biochemistry
- 6.4.1. Protein Folding
- 6.4.2. Membrane Biophysics
7. Environmental Chemistry
- 7.1. Atmospheric Chemistry
- 7.1.1. Greenhouse gases
- 7.1.2. Ozone depletion
- 7.1.3. Air pollutants and smoke
- 7.2. Water Chemistry
- 7.2.1. pH and water hardness
- 7.2.2. Wastewater treatment
- 7.2.3. Aquatic Chemistry
- 7.3. Soil Chemistry
- 7.3.1. Heavy metal contamination
- 7.3.2. Soil pH and Buffering
- 7.3.3. Nutrient cycling
- 7.4. Toxicology and Chemical Safety
- 7.4.1. Toxicokinetics
- 7.4.2. Risk Assessment in Toxicology and Chemical Safety in Environmental Chemistry
- 7.4.3. Effects of pollutants on the environment